Association tests based on the principal-component analysis

نویسندگان

  • Sohee Oh
  • Taesung Park
چکیده

Haplotypes are composed of specific combinations of alleles at the several loci on the same chromosome. Because haplotypes incorporate linkage disequilibrium (LD) information from multiple loci, haplotype-based association analyses can provide greater powers than the single-marker analysis in the association studies. However, when we construct haplotypes using many markers simultaneously, we may be confronted with a sparseness problem due to a large number of haplotypes. In this paper, we propose the principal-component (PC) association test as an alternative to the haplotype-based association test. We define the PC scores from the LD blocks and perform the association test using logistic regression. The proposed PC test was applied to the analysis of the Genetic Analysis Workshop 15 simulated data set. By knowing the answers of Problem 3, we evaluated the performance of the PC test and the haplotype-based association test using Akaike Information Criterion (AIC), power, and type I error. The PC test performed better than the haplotype-based association test in the sense that the former tends to have smaller AIC values and slightly greater power than the latter.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains

In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...

متن کامل

Feature reduction of hyperspectral images: Discriminant analysis and the first principal component

When the number of training samples is limited, feature reduction plays an important role in classification of hyperspectral images. In this paper, we propose a supervised feature extraction method based on discriminant analysis (DA) which uses the first principal component (PC1) to weight the scatter matrices. The proposed method, called DA-PC1, copes with the small sample size problem and has...

متن کامل

Faults and fractures detection in 2D seismic data based on principal component analysis

Various approached have been introduced to extract as much as information form seismic image for any specific reservoir or geological study. Modeling of faults and fractures are among the most attracted objects for interpretation in geological study on seismic images that several strategies have been presented for this specific purpose. In this study, we have presented a modified approach of ap...

متن کامل

Prioritizing Effective Factors in the Making Ethical Organizations by Using Combined Method of Interpretative Structural Modeling (ISM) and Principal Component Analysis (PCA)

Nowadays Organizations consider ethical principles in the business environment as an advantage and seek to strengthen it. This requires a coherent, interactive and cognitive understanding of the parts of internal and external environment of organization, which leads to the realization of the rights of the beneficiaries of the organization. The purpose of this paper is prioritize  the factors in...

متن کامل

An application of principal component analysis and logistic regression to facilitate production scheduling decision support system: an automotive industry case

Production planning and control (PPC) systems have to deal with rising complexity and dynamics. The complexity of planning tasks is due to some existing multiple variables and dynamic factors derived from uncertainties surrounding the PPC. Although literatures on exact scheduling algorithms, simulation approaches, and heuristic methods are extensive in production planning, they seem to be ineff...

متن کامل

Association between Socio-structural Factors and History of Gestational Diabetes: A Population-based Cohort Study in Hoveyzeh County

Introduction: Gestational diabetes mellitus (GDM) is associated with several consequences during pregnancy and later life. Few studies have focused on social factors related to gestational diabetes using combined indicators. Materials and Methods: The data of the Hoveyzeh cohort study were used in this study. The studied population was women aged 35-70 from Hoveyzeh County, who were enrolled in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • BMC Proceedings

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2007